Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 545: 141-147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513760

RESUMO

Neonatal encephalopathy (NE) impairs white matter development and results in long-term neurodevelopmental deficits. Leveraging prior findings of altered neuronal proteins carried by brain-derived extracellular vesicles (EVs) that are marked by a neural-specific cell surface glycoprotein Contactin-2 (CNTN2) in NE infants, the present study aimed to determine the correlation between brain and circulating CNTN2+-EVs and whether NE alters circulating CNTN2+-EV levels in mice. Brain tissue and plasma were collected from postnatal day (P)7, 10, 11, 15 mice to determine the baseline CNTN2 correlation between these two compartments (n = 4-7/time point/sex). NE was induced in P10 pups. Brain and plasma samples were collected at 1, 3, 6, 24, and 120 h (n = 4-8/time point/sex). CNTN2 from brain tissue and plasma EVs were quantified using ELISA. ANOVA and linear regression analyses were used to evaluate changes and correlations between brain and plasma CNTN2+-EVs. In baseline experiments, CNTN2 in brain tissue and plasma EVs peaked at P10 with no sex-difference. Brain and plasma CNTN2+-EV showed a positive correlation across early postnatal ages. NE pups showed an elevated CNTN2 in brain tissue and EVs at 1 h and only in brain tissue at 24 h. NE also abolished the positive plasma-brain correlation. The findings establish a link for central CNTN2 and its release into circulation during early postnatal life. The immediate elevation and release of CNTN2 following NE highlight a potential molecular response shortly after a brain injurious event. Our findings further support the utility of circulating brain-derived EVs as a possible bioindicator of NE.

2.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515015

RESUMO

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Assuntos
Deficiências de Ferro , Ferro , Gravidez , Feminino , Animais , Ratos , Masculino , Ferro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Epigênese Genética , Colina/farmacologia , Colina/metabolismo , Hipocampo
3.
J Nutr ; 154(4): 1141-1152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408730

RESUMO

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Assuntos
Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Ratos , Animais , Masculino , Ferro/metabolismo , Transcriptoma , Colina , Animais Recém-Nascidos , Ratos Sprague-Dawley , Vitaminas/farmacologia , Hipocampo/metabolismo
4.
Nutrients ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986048

RESUMO

BACKGROUND: Fetal-neonatal iron deficiency (ID) causes long-term neurocognitive and affective dysfunctions. Clinical and preclinical studies have shown that early-life ID produces sex-specific effects. However, little is known about the molecular mechanisms underlying these early-life ID-induced sex-specific effects on neural gene regulation. OBJECTIVE: To illustrate sex-specific transcriptome alterations in adult rat hippocampus induced by fetal-neonatal ID and prenatal choline treatment. METHODS: Pregnant rats were fed an iron-deficient (4 mg/kg Fe) or iron-sufficient (200 mg/kg Fe) diet from gestational day (G) 2 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline) from G11-18. Hippocampi were collected from P65 offspring of both sexes and analyzed for changes in gene expression. RESULTS: Both early-life ID and choline treatment induced transcriptional changes in adult female and male rat hippocampi. Both sexes showed ID-induced alterations in gene networks leading to enhanced neuroinflammation. In females, ID-induced changes indicated enhanced activity of oxidative phosphorylation and fatty acid metabolism, which were contrary to the ID effects in males. Prenatal choline supplementation induced the most robust changes in gene expression, particularly in iron-deficient animals where it partially rescued ID-induced dysregulation. Choline supplementation also altered hippocampal transcriptome in iron-sufficient rats with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided unbiased global assessments of gene expression regulated by iron and choline in a sex-specific manner, with greater effects in female than male rats. Our new findings highlight potential sex-specific gene networks regulated by iron and choline for further investigation.


Assuntos
Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Animais , Ratos , Masculino , Feminino , Colina/farmacologia , Colina/metabolismo , Transcriptoma , Animais Recém-Nascidos , Ratos Sprague-Dawley , Ferro/metabolismo , Vitaminas/farmacologia , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Nutrients ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960080

RESUMO

Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Hipocampo/efeitos dos fármacos , Deficiências de Ferro , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Colina/administração & dosagem , Proteínas de Ligação a DNA/genética , Suplementos Nutricionais , Epigênese Genética , Feminino , Hipocampo/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos
6.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836113

RESUMO

Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.


Assuntos
Anemia Ferropriva/genética , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Anemia Ferropriva/complicações , Animais , Animais Recém-Nascidos , Desenvolvimento Infantil/fisiologia , Epigenômica , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Transtornos do Neurodesenvolvimento/genética , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Transmissão Sináptica/fisiologia
7.
Drug Alcohol Depend ; 221: 108598, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626484

RESUMO

BACKGROUND: Opioid abuse is a chronic disorder likely involving stable neuroplastic modifications. While a number of molecules contributing to these changes have been identified, the broader spectrum of genes and gene networks that are affected by repeated opioid administration remain understudied. METHODS: We employed Next-Generation RNA-sequencing (RNA-seq) followed by quantitative chromatin immunoprecipitation to investigate changes in gene expression and their regulation in adult male and female rats' dorsomedial prefrontal cortex (dmPFC) after a regimen of daily injection of morphine (5.0 mg/kg; 10 days). Ingenuity Pathway Analysis (IPA) was used to analyze affected molecular pathways, gene networks, and associated regulatory factors. A complementary behavioral study evaluated the effects of the same morphine injection regimen on locomotor activity, pain sensitivity, and somatic withdrawal signs. RESULTS: Behaviorally, repeated morphine injection induced locomotor hyperactivity and hyperalgesia in both sexes. 90 % of differentially expressed genes (DEGs) in morphine-treated rats were upregulated in both males and females, with a 35 % overlap between sexes. A substantial number of DEGs play roles in synaptic signaling and neuroplasticity. Chromatin immunoprecipitation revealed enrichment of H3 acetylation, a transcriptionally activating chromatin mark. Although broadly similar, some differences were revealed in the gene ontology networks enriched in females and males. CONCLUSIONS: Our results cohere with findings from previous studies based on a priori gene selection. Our results also reveal novel genes and molecular pathways that are upregulated by repeated morphine exposure, with some common to males and females and others that are sex-specific.


Assuntos
Morfina/farmacologia , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Córtex Pré-Frontal/fisiologia , Analgésicos Opioides , Animais , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Hiperalgesia/genética , Masculino , Transtornos Relacionados ao Uso de Opioides/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...